
f ,_.#

/-,xt.tl_ _.

O c/'T.

(NASA-CR-/_,;,-,_'Z//_l MOOEL-BASED

REASONING FOR POWER SYSTEM

MANAGEMENT USING KATE ANO THE

SSMIPMAD Final Report (Florida

Inst. of Tech.) 65 p

//51 70

p
N94-21882

Unclas

G3/20 0198170

MODEL-BASED REASONING FOR POWER SYSTEM

MANAGEMENT USING KATE AND THE SSM/PMAD

A FINAL REPORT

s_ TO NASA-MSFC IN PARTIAL FULFIL_cMENT
tg

OF CONTRACT NAS-NAS39385

OF THE REQUIRE1VJ_NTS

By

Robert A. Morris

Avelino J. Gonzalez

Daniel J. Carreira

F.D. Mckenzie

Brian Gann

December 1993

Acronyms Used in this Document

FDIR Fault Detection, Isolation and Recovery

FRAMES Fault Recovery and Management Expert System

IPC .. Intelligent Power Controller

KATE Knowledge-based Autonomous Test Engineer

LLP ... Lowest-level Processor

RBI ... Remote Bus Isolator

RPC .. Remote Power Controller

SSM/PMAD Space Station Module/Power Management and Distribution

TTA .. Time-To-Action

I

PAGE_ /NTENTIONALLYBLANK

ii

pRBOIOtN6 PAGE BLANK NOT FW,.ldc"fl

Contents

3

Report Summary 1

Project Requirements and Motivation 2

State of the Art in Autonomous FDIR 4

3.1 Knowledge-based Approaches to FDIR 6

3.2 Model-based Reasoning for FDIR 8

3.2.1 Structure and Behavior Models For Power Distribution 12

3.2.2 Model-based Reasoning for Power Distribution FDIR 15

4 Utilization of KATE 16

5 Utilization of the SSM/PMAD

IPC

6.1

6.2

19

7

Architecture 21

The IPC/RT System 21

6.1.1 CAD Facilities Overview 24

6.1.2 Runtime Facilities Overview 26

6.1.3 Iconic Representation of PMAD Objects 29

6.1.4 Frame Data Validation 29

Sample Runs 30

6.2.1 Fault with Recovery 31

6.2.2 Fault with Double Recovery 32

6.2.3 Multiple Fault without Recovery 33

Testing the IPC 34

7.1 Test Scenarios 35

7.2 Test Results 40

7.3 Summary and Evaluation of Tests 42

8 Summary and Reflections 43

iii

9 Appendix: Using the IPC 47

9.1 Starting the IPC and Using the Menus 47

9.2 Building IPC/RT 51

iv

List of Tables

Test Objectives

Example Runs for Fault Tests

Results of IPC Tests on PMAD Breadboard

Speed Comparison of Local vs. Remote Testing

39

4O

41

42

v

List

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

of Figures

Meta-Object Definitions

The SSM/PMAD Breadboard Schematic

Intelligent Power Controller Architecture

Program Flow for Load Model

IPC/RT CAD Facilities

IPC/RT Runtime Facilities Overview

Example Iconic RPC

Monitoring the SSM/PMAD

Scenario 1: Fault to RPC P306

Scenario 1: Failure of RPC-P306 and Power Restored to PRPC-30620

Scenario 2: Fault to RPC P3

Scenario 2: Failure of RPC-P3 and Power Restored to Critical Loads

Scenario 3: Fault to RPCs P303 and P307

Scenario 3: Failure of RPC-P303 and RPC-P307

Main Menu Bar

Edit Object Menu

Runtime Object Menu

Edit Icons Dialog Box

Edit Connections Dialog Box

Display of SSM/PMAD Model

18

20

22

23

25

27

29

31

32

33

34

35

36

37

47

57

57

58

59

60

vi

1 REPORT SUMMARY 1

1 Report Summary

The overall goal of this research effort has been the development of a software system

which automates tasks related to monitoring and controlling electrical power distribu-

tion in spacecraft electrical power systems. The resulting software system is referred

to hereafter as the Intelligent Power Controller, or IPC. The specific tasks performed

by the IPC include:

1. Continuous monitoring of the flow of power from a source to a set of loads;

2. Fast detection of anomalous behavior indicating a fault to one of the components

of the distribution system;

3. Generation of diagnosis (explanation) of anomalous behavior;

4. Isolation of culprit (faulty object) from remainder of system; and

5. Maintenance of flow of power to critical loads and systems (e.g. life-support)

despite fault conditions being present (recovery).

The collection of these operations is called FDIR (fault detection, isolation and re-

covery). The IPC successfully performs each of these operations.

The IPC system has evolved out of KATE (Knowledge-based Autonomous Test

Engineer), developed at NASA-KSC. KATE consists of a set of software tools for

developing and applying structure and behavior models to FDIR applications. KATE

includes an AI system for diagnosis which employs a technique called model-based

reasoning. The major impetus for this research is the desire to test the hypothesis

that model-based reasoning can be successfully applied to spacecraft power system

FDIR. Our review of the research literature on model-based FDIR has produced no

evidence of previous efforts yielding results proving or refuting this hypothesis. The

significance of this effort, therefore has been the confirmation of the hypothesis that

model-based reasoning can be successfully applied in this domain.

Developing the IPC required extensive testing in a real-time environment. To meet

this requirement, the Space Station Module/ Power Management and Distribution

2 PROJECT REQUIREMENTS AND MOTIVATION 2

system (hereafter, SSM/PMAD or simply PMAD) was utilized. The PMAD bread-

board is a distribution system of space station components built to develop and test

automation software to be used on Space Station Freedom [10]. The IPC was tested

on PMAD using two methods: local and remote. Remote testing consisted of internet

transfer of data and commands between the breadboard, located in Huntsville, and

the R&D sites, viz., Orlando and Melbourne, FL. Initially, the remote testing was

simply a matter of expediency, since it would have been expensive to carry out the

research at NASA-MSFC. It soon became clear, however, that the internet delay was

an important factor in evaluating the IPC, since it simulated a scenario in which the

IPC functions as a ground-based controller of an in-flight spacecraft. Local testing,

on the other hand, simulated conditions in which the IPC functions as an on-board

controller.

The remainder of this document describes in detail each of the important top-

ics related to the development of the IPC. First, a more extensive introduction to

the project goals, methodology, and tools utilized will be presented. There follows a

discussion of model-based reasoning as a technique for performing FDIR. The archi-

tecture of the IPC itself is discussed in section 6, following by an extensive summary

of the tests performed on the PMAD (section 7). Finally, by way of final summary, an

analysis of the test results in the context of the proving the feasibility of the concept

of model-based power control.

2 Project Requirements and Motivation

There are numerous advantages of automating tasks related to spacecraft power man-

agement in general, and control of power distribution in particular. These advantages

are particularly dramatic in the case of future, long mission spacecraft such as Space

Station Freedom, where it is especially inefficient to maintain continuous, manual

monitoring and control of vehicle subsystems. We envision an IPC, in its final form,

to reside on board, and be capable of both fully autonomous and interactive decision

making. Alternatively, the IPC could reside as part of the ground-based automation

software used to assist ground controllers in spacecraft FDIR.

2 PROJECT REQUIREMENTS AND MOTIVATION 3

To make significant strides to realize this goal, the IPC developers were faced with

a number of initial tasks. The first was to classify the sorts of faults that can occur in

power distribution systems. In general, two basic kinds of faults can occur in a power

distribution system that affect the ability of the entire system to perform properly.

One of them is an open circuit, where the source of power is unintentionally cut off

from the load. Such incidents result from inadvertent tripping of a circuit breaker,

or from physical damage to a conductor that causes it to lose electrical continuity.

Depending on the location in the hierarchy where the open circuit took place, this

can disable either only one, or a large number of specific loads.

The second and more significant of the types of faults is a short circuit, which

can cause the electric power flow to bypass all or some of the loads and render them

useless, even though the short circuit may not have taken place within the affected

loads themselves. A short circuit can also have destructive side effects if it causes

large amounts of current to flow in the circuit. For this reason, the faulty components

must be immediately isolated from the rest of the circuit, even if this means disabling

some loads until the condition that caused the short circuit can be eliminated. The

goal is to isolate the short circuit while disabling the fewest loads.

Isolation of a fault has to be done quite rapidly in order to avoid the damaging

heat buildup that occurs when large currents flow in conductors or equipment not

designed to handle them. It is typically desirable to interrupt a fault current (isolate

the short circuit) within 0.25 to 0.50 seconds from detection. These numbers are

representative, but in general, the larger the current flow, the faster it needs to be

interrupted.

Some loads, however, are considered critical in nature, and cannot afford to be

isolated from the power source under any circumstances. Examples of these are power

to an operating room in a hospital, power to a large computer bank, power to fire

control equipment, as well as life support subsystems in spacecraft. For critical loads,

redundant sources of power or paths from such sources are generally designed so that

upon disability of one source and/or path, the other one is activated immediately to

maintain (nearly) uninterrupted power flow. Access to the alternate source of power

can be enabled through the closing of normally open circuit breakers, which establish

3 STATE OF THE ART IN AUTONOMOUS FDIR 4

a path from a power source to the critical load.

Electric power systems are monitored at various locations throughout the network,

typically coinciding with the location of a breaker. The monitoring function is carried

out with voltage sensors and current sensors (called voltage transformers, or VT's,

and current transformers, or CT's, respectively), the latter being more common than

the former.

Our primary objective, then, in building the IPC was to automate the tasks related

to power distribution FDIR. As a preliminary stage in this process, an extensive

review of the research literature describing similar efforts was undertaken. These are

summarized in the following section.

3 State of the Art in Autonomous FDIR

The state of the art in power distribution system control can be characterized as

employing one or more of the following techniques:

1. Sophisticated switch gear and other devices for fast local response;

2. Global monitoring using conventional computer hardware and software;

3. Limited capabilities for software diagnosis, control and recovery using mathe-

matical modeling or artificial intelligence; and

4. Promising, but on the whole untested, new directions in computer automation

using parallel processing and neural networks.

The traditional means of protecting a power system has been local in scope. Upon

detection of higher than normal current values from a CT, a breaker will be com-

manded to trip open and interrupt the flow of electricity to the load(s) downstream

from it. The interface between the circuit breaker and the sensor is provided by pro-

tective relays which typically possess a mechanism for sending a signal to a nearby

switching device to trip itself as a response to an abnormal situation recognized by

the sensing device. This is often referred to as local control, because the sensor does

3 STATE OF THE ART IN AUTONOMOUS FDIR 5

not have any indication of current values at other locations in the network. The trip-

ping of breakers is coordinated through short, pre-determined, time delays to allow

the breaker located closest to the short circuit to trip first. Such local control has

been the norm for many years in earth-bound power systems due to the absence of a

controlling device powerful enough to combine all the inputs and reason about them.

The clear advantage of local control is speed; being local to the device means

no overhead is incurred as the result of communication to a global controller. On

the other hand, a protection scheme based on local devices is as reliable as the most

unreliable device in the system. A malfunction of one of these can lead to the failure of

the entire system if a short circuit happens to take place within its zone of protection.

Intelligent global control of an electrical power distribution system, where one

decision-making device (a controller) has a global view of all sensor readings, can

provide significant advantages in terms of reliability, economy, and ease of reconfigu-

ration over the local means of control. Information about an entire electrical power

distribution network provides the capability to recognize and isolate faults in the

system with only one monitoring and controlling device. A reliable intelligent power

controller, therefore, represents an improvement in the reliability of the monitoring,

diagnostic and isolation function for the entire system.

Reliability can also be interpreted as correct action in the presence of potentially

incorrect readings (referred to as security). Global control provides the framework for

verification of the validity of sensor readings through comparisons with other sensors

in different locations in the power system, something that local control is not capable

of doing.

Additionally, global control can facilitate the recovery from faults and can re-

connect critical loads to an alternate source of power without depending on the re-

liability of the local relay-type devices, whose failure to recognize the condition can

result in serious consequences.

Third, from an economic standpoint, the cost of a single intelligent device is

generally lower than that of several local devices. This difference becomes more

pronounced for larger systems. Moreover, from the maintenance cost viewpoint, there

is no need to perform periodic maintenance on several local devices. This can be

3 STATE OF THE ART IN A UTONOMO US FDIR 6

a significant advantage in applications such as manned space vehicles where such

maintenance is costly due to the inaccessibility of the devices and the high cost of

labor.

Finally, changes to the loads or to the components of the power distribution system

are typically the norm during the course of the years of operation of a power system.

Such changes must be quickly reflected in the fault detection and isolation schemes

in order for them to remain effective. In the case of local control, this may require

replacing some devices by new ones which are of a different rating, time delay or

even operation mode. Furthermore, since traditional protection in power systems

depends on the coordination of devices in different zones of protection, changes in the

system configuration may require the modification of devices in other zones in order

to maintain coordination. In an intelligent automated global control environment,

however, all modifications would be done to the information that the controller has

about the system, which can be done much more easily.

The emergence of powerful microprocessors have allowed inexpensive global con-

trollers to be applied to this problem. However, the techniques used for implementing

the global control vary and sometimes have significant drawbacks. This next section

will discuss them.

3.1 Knowledge-based Approaches to FDIR

Knowledge-based systems have shown significant promise as global control mecha-

nism. Broadly speaking, there are two main approaches to FDIR using artificial in-

telligence techniques: the ezperiential-based and the first principles-based approaches. 1

The first approach applies associational knowledge based on human experience,

captured through various knowledge acquisition techniques. This knowledge can be

expressed logically as propositions of the form:

If (symptoms} then (fault}.

1A more common terminology for classifying these approaches is rule-based vs. model-based. This

is somewhat misleading, however, since, on the one hand, models based on first principles can be

expressed as rules, and, on the other, a set of rules can be said to collectively model a system.

3 STATE OF THE ART IN AUTONOMOUS FDIR 7

where collectively this knowledge associates one, or a combination of, sensor readings

to a malfunction, and can suggest a remedial course of action. Several systems using

this approach have been described in the literature, most of them as applications

to space power systems [1], [14], [18], [23], [27], [33], [35], [38]. One of the more

advanced systems based on associational knowledge is FRAMES (Fault Recovery

and Management Expert System), developed in conjunction with the SSM/PMAD

at NASA-MSFC. FRAMES is unique in containing as part of its control mechanism

a means of managing both the knowledge base itself (through a classification of the

possible problems the system can exhibit), and the sensor data that is processed

(through a clustering of symptoms).

While the experiential-based approach represents a significant improvement to

local monitoring and control, they have been known to suffer from certain drawbacks.

Among them is the fact that only faults which have been previously experienced and

represented by the knowledge engineer can be successfully identified. This is because,

being heuristic-based, the reasoning is based on the past experience of domain experts.

If the requisite experience does not exist, or is not represented within the knowledge

base due to the uncommon or unexpected nature of the fault, then that fault will not

be detected. Furthermore, associative systems can be cumbersome to modify when

changes in the system configuration are introduced.

In its original form, the first principles-based approach represents knowledge about

a physical system in terms of structure and behavior under normal operating condi-

tions. Logically, the knowledge can be depicted as propositions of the form

If not- abnormal(ok)then output(ok)= f(input(ok))

where f expresses knowledge about ok's behavior as an input-output function. Re-

cent research on diagnostic knowledge-based systems is relying more and more on

employing the (non-associative) model-based approach. Since the first principles-

based approach was the one taken in the IPC, it will be useful to acquaint the reader

with a more extensive overview.

3 STATE OF THE ART IN A UTONOMO US FDIR 8

3.2 Model-based Reasoning for FDIR

Recent advances in artificial intelligence for developing reasoners for diagnosing com-

plex systems, such as power systems, stress the need for a robust knowledge repre-

sentation for the system being diagnosed. A representation based on the strmcture

and behavior of each component of the device offers, for many, the best solution to

the robustness problem. By structure is meant knowledge of the connectivity of the

component to the rest of the system. By behavior, as noted above, is meant roughly

how the component transfers (a set of) inputs into (a set of) outputs. Behavioral

models can be of two broad kinds: either correct behavior models or fauIt models.

As indicated, correct models model the proper functioning of a device, whereas fault

models describe common ways in which a component can misbehave. Fault models

are considered attractive because they provide a way of incorporating some of the

experiential knowledge provided by experts into the knowledge base, and also pro-

vide a more detailed explanation of failure than correct models can often provide.

Knowledge about structure and behavior can be encapsulated into a object-based

framework, where the connectivity of the objects in the framework exactly reflects

the connectivity of the objects in the system being modeled.

In the IPC, structure and (normal) behavior models are used by the reasoner to

simulate the performance of the actual system. Inputs are fed into the model which

correspond to the inputs to the actual system. These values are propagated, using

structural and behavioral knowledge, throughout the model to a set of outputs, which

correspond to sensor readings at those points. By this method, the system can predict

these readings based on knowledge of the inputs.

The ability to predict using structure and behavior knowledge is the basis of model

based diagnosis. More specifically, the discrepancies between observed and predicted

values drive the diagnostic reasoner. The reasoner attempts to find the smallest set

of components whose failure would explain the discrepancies between prediction and

observation. Logically, the problem is to maintain the consistency of the knowledge,

including the current observations. The computational complexity of maintaining the

consistency of knowledge is, in the worst case, not something any algorithm can do

(i.e., the problem is undecidable), and in general a difficult computational problem;

3 STATE OF THE ART IN A UTONOMO US FDIR

hence, it is important for automated reasoners to have a mechanism for guiding and

controlling the search for a solution.

In general, the model-based diagnostic process is often viewed as having three

parts: first, generating a set of possible suspects, testing each suspect, either individ-

ually or in sets, and discriminating among the suspects that remain after the final

test. The generation phase uses the structural knowledge about the system to col-

lect components that might have caused the discrepancy. A variation of this method

employs fault models of each suspect which can be applied by the simulator to see

if the faulty behavior can be reproduced. The discrimination phase often involves

performing additional measurements to further reduce the suspect list.

One approach (constraint suspension [5]) for combining generation and test is

to view each component's normal behavior as setting constraints on the behavior

of the entire system. Then abnormal behavior (i.e., when one or more component

is a suspect) is the case where the component's constraints on the whole system is

unknown. This case can be simulated by removing the constraint knowledge from

the knowledge base; if the inconsistency in the knowledge is thereby removed, that

component is the sole cause of the failure.

A diagnosis can be viewed as a set of components which explain all the cop't_c)_s

in the knowledge, where a c_Dt is a set of components at least one of which _must

be malfunctioning, given the knowledge. One common preference criteria for ranking

diagnoses, hence improving the search space, is in terms of mininality: this says

that the most common failures are to a small number of components. A special

case of this is the assumption of a single point of failure. Other, more sophisticated

techniques for ranking diagnoses use probabilities. Another technique employed to

improve effciency in reasoning is the use of truth maintenance [6]. Briefly, this method

involves recording all the conclusion drawn from the model and observations, to be

reused, without computational cost, in future inferences.

The operation consuming the most computational resources while performing

model-based diagnosis is the use of the model for propagation, either forward for

prediction, or "backward" (i.e. from effect to cause) for the purpose of ditgnosis.

ORIQ!NAL PAGE'. |5

OF POOR QIJALri'_

3 STATE OF THE ART IN AUTONOMOUS FDIR 10

Techniques like truth maintenance, probabilistic ranking of diagnoses, and fault mod-

els, have arisen as a response to this complexity. The system's behavior is measured

mathematically in terms of the algebraic expressions describing its behavior. Current

constraint oriented model-based diagnostic systems, for example, are "local" in the

sense that they propagate values through one model component at a time, solving

at each stage one equation in one unknown [5]. More complex systems may have

behavior whose algebraic representation consists of equations with more than one un-

known. This corresponds in the physical world to more complex causal dependency

among the components; e.g. mutual dependency or reconvergent fanout (a signal that

branches and then reconverges at a later point).

Researchers in model-based reasoning have attempted to solve the issue of com-

plexity in a number of ways. The most promising, in our minds, is based on the idea

that reasoning in the face of system complexity requires the ability to perform ab-

stractions in order to guide the reasoning process [37]. Informally, abstraction is the

process of focusing on only what is essential, ignoring what is inessential. Two kinds

of abstraction, behavioral and structural, are possible. Behavioral abstraction ignores

certain characteristics components have and focuses on only ones deemed important.

Structural abstraction ignores details related to connectivity of objects, focusing only

on a subset of these connections. Current research views abstraction as occurring

dynamically, when needed, which implies the presence of multiple models of a system

which differ in their levels of abstraction. The reasoner is faced with choosing a model

for prediction/diagnosis, and well as applying the model.

Every model-based diagnostic reasoner possesses three high-level modules in its

architecture. These are:

• a predictor which generates behavioral predictions based on the model, and

detects discrepancies between observed and predicted behavior;

• a candidate proposer which generates conflicts from these discrepancies; gener-

ates candidates based on the conflicts; and discriminates and refines candidates;

and

• a diagnostic strategist which controls the diagnostic process, in general, by

3 STATE OF THE ART IN A UTONOMO US FDIR 11

determining the next step in the process of generating a diagnosis [24].

Predictors typically employ constraint propagation [7], which is the process of com-

puting the deductive closure of the model's knowledge, given a set of inputs. The

task of candidate generation in model-based diagnosis, in systems like GDE [7], views

the computational problem as one of maintaining the consistency of knowledge about

the system.

The discrepancies between observed and predicted values drive the diagnostic

reasoner. When discrepancies emerge, an inconsistency between predicted and actual

values results. The system records the dependencies of the behavioral predictions

made by the model of normal behavior, and determines which assumptions have led

to the inconsistency. The reasoner does this by attempting to find the smallest set

of components whose failure would explain the discrepancy between prediction and

observation. Removing correctness assumptions will eventually make the knowledge

consistent, and the result is a set of candidates, or hypotheses, for explaining the

discrepancies.

The traditional diagnostic strategy adopted for controlling the process has been

the so-called dependency-recording strategy [24]. In this approach, the system records

the dependencies of the predictions in order to determine which of the assumptions

used in modeling the system have led to conflicts. An Assumption-based Truth Main-

tenance system (ATMS) has been employed for this bookkeeping operation, e.g. as

part of the GDE system. The other main approach to strategy selection has been the

iterative search strategy [25]. This involves using the discrepancies to search through

a space of possible variations from the normal model, until a matching fault model

has been obtained.

There are two major obstacles in developing and applying structure and behavior

models for reasoning about complex systems for diagnosis: limiting the amount of

computation required to reach a diagnosis, and building a model of the system of

sufficient detail (granularity) to be useful in diagnosis. One complicating factor is

that meeting one of these two requirements tends to inhibit accomplishing the other.

Solving these dual problems constitute open research topics in the field of model-based

diagnosis. Systems have been developed which incorporate some of the potential

3 STATE OF THE ART IN AUTONOMOUS FDIR 12

solutions to the problems, but few, if any, systems have progressed to the deployment

stage. These problems are illustrated in the next section in association with the

development of IPC models.

3.2.1 Structure and Behavior Models For Power Distribution

The structure of a system of components of a power distribution system can be

represented in a straightforward manner. Based on the granularity desired in the

model, busses, wires, loads, switches, loads, batteries, and power sources of various

kinds can be represented as objects in a model. Connectivity in structure and behavior

models is depicted logically as statements of the form

Otttpttt(O 1) -_- input(o2).

This statement signifies that ol is connected upstream to o2. In a power distribution

model, (more specifically, to model what is been termed secondary power distribution)

it is essential to include representations for the switches, buses, and loads. More

granular models would include wires or cables, but for our purposes this was not

required. It is also required to model sensors (as components carrying output of the

system) and interfaces with the harware used to control the objects. These are called

in the IPC model commands, representing inputs to the system.

The correct behavior of a set of power system components is characterixed by a set

of first principles which describe the correct functioning of the system. These consist

of rules which characterize the voltages and currents presented in the system circuit.

Voltages and currents are determined by considering the constraints imposed by the

behavior of the components, as well as the constraints imposed by the connectivity

of the components. Constraints imposed by the interconnections of the circuit are

expressed by Kirchoff's voltage law (KVL) and Kirchoff's current law (KCL). These

laws are best viewed as applied to the entire system, or, as an abstraction, to a graph

of the system. The behavior of a circuit can be characterized as a set of impedance

equations and the equations implied by KCL or KVL. In this manner, KCL and KVL

provide the constraints of interconnection.

3 STATE OF THE ART IN AUTONOMOUS FDIR 13

As noted, model-based diagnostic systems have modeled the functionality of a

device as a local transfer function that relates its input to its output. This is reason-

able in digital electronic systems, and process systems can be approximated similarly.

However, in electrical power systems, there are complexities that must be addressed

in order for the system to be modeled in terms of structure and behavior. Two such

complexities are:

• A component's behavior is a complex function of a number of parameters (volt-

age, current, impedance) operating simultanously; and

• The behavior of a component is properly described not merely by its input/output

characteristics, but also by the characteristics of the devices both upstream and

downstream from it.

The first problem was solved by the IPC developed by applying reasonable sim-

plifying assumptions which affected the granularity of the model (i.e., the resulting

model abstracted from certain properties that were deemed unnecessary) without hin-

dering the ability to perform its required FDIR functions. Specifically, voltage was

assumed to be constant everywhere in the system, and therefore could be modeled

as a constant value, rather than something that needed to be computed. Secondly,

impedances on the components were deemed too insignificant to contribute to the

behavior of the system; they were also not modeled. The result was a model in

which only current was propagated. Finally, loads were assumed to carry constant

resistance, and therefore was also modeled as a non-computed value. This works for

most kinds of loads; an exception is a fan, whose requirements for current changes

somewhat over time (e.g., requiring an initial surge).

The second problem, modeling global effects of component behavior required more

serious changes to the modeling process. One of the limitations of structure and

behavior models is that the dual concepts of inputs and outputs imply a strong sense

of directionality in behavior. This is not practical for certain kinds of changes to

devices such as changes that result when an RPC opens or closes. Many researchers

in model-based reasoning have been driven by this limitation of structure and behavior

knowledge to seek a solution by representing more abstract forms of knowledge such

3 STATE OF THE ART IN AUTONOMOUS FDIR 14

as functional knowledge (e.g., [15]). We selected a simpler strategy which did not

require multiple models.

The specific problem we needed to address in building the model is the modifica-

tions to the equivalent resistance of the network caused by the opening or closing of

RPC's. This resistance must be recomputed in order for the model to predict new

current values at the sensors and elsewhere. The solution required the introduction

of what we termed recta-objects. Meta-objects are used to represent non-directional

behaviors in unidirectional models. These dummy components represent the global

parameters in the system and are represented by mathematical equations that de-

scribe the relationships between these parameters. For example, they represent the

equations needed to correctly recalculate the equivalent impedance of a circuit modi-

fied through tbe opening or closing of an RPC. Thus, when global phenomena occur-

ring within the system limits the diagnostic abilities imparted by the unidirectional

model, meta- objects are employed.

Consequently, from the standpoint of the predictor, behavior can be classified as

local or global. Local phenomena can be handled by the standard input-output first-

order transfer flmctions commonly used in unidirectional models. Global phenomena,

on the other hand, must be represented by deriving an output from a number of input

sources that are not directly (structurally) connected to each other either upstream

or downstream. Due to the multi-directional nature of meta-objects, the use of meta-

objects within the processing algorithms of a diagnoser must be restricted so that

continuous looping is avoided.

Although pursued independently, the meta-component enhancement to the IPC

represention apparatus seems similar to that explored recently by the developers of

KATE [34]. Our opinion currently is that the concept of meta-objects represents

only a partial solution of modeling global behavior, since their implementation still

requires significant amounts of hard coded information about the system. Addition-

ally, the IPC currently has no way of representing variable loads, such as motors,

whose loadings may normally change throughout an interval of time. (This point is

developed further below).

3 STATE OF THE ART IN AUTONOMOUS FDIR 15

As noted, research on model-based diagnosis has focused mainly on representing

structure and behavior knowledge, but more recently attention is shifting in order to

consider representing other kinds of knowledge in a model. One reason for this shift is

the need to find more efficient ways of controlling the reasoning process in the effort

of diagnosing more complex systems. Power system behavior is often noted as an

example of a physical system with complex behavior (e.g. [371; [31]). As we'll observe

below, the investigation described here incorporates some of the advances proposed

by recent researchers.

3.2.2 Model-based Reasoning for Power Distribution FDIR

Of systems that employ a normal structure and behavior model for power system

FDIR, Marple [12] provides an exemplary instance. Marple employs constraint sus-

pension as its diagnostic strategy. It handles the complexity in propagating values in

analog system models by using tolerances. It has been applied to actual power system

hardware, and has an 85 per cent accuracy rate in identifying failures to components,

including sensors.

The Marple effort is illustrative of the perception on the part of system developers

using the model-based paradigm that enhancements to the paradigm are needed for

diagnosing more complex devices such as power systems. This perception can be

traced to observations made by the original developers of the paradigm (e.g., [5]).

We will henceforth refer to the time to action, or TTA, as the time it takes from

the onset of a discrepency to the onset of the recovery process. TTA measures the

speed of the diagnosis. As noted at the outset, one of our primary goals was to achieve

a TTA which makes the IPC suitable for real time, on-board, use. It was decided,

for this reason, to find an alternative to the constraint-suspension technique for diag-

nosis. The solution, roughly, involves replacing constraint suspension with additional

knowledge about the connectivity of the system, as well as global assumptions about

the behavior of the PMAD. Applying this alternative seems to have improved the

efficiency of the diagnoser (although quantitative comparisions with the constraint

suspension approach were not performed).

Finally, to adequately control power systems from massive failure, an automated

4 UTILIZATION OF KATE 16

system must implement the ability to isolate components from the rest of the system.

For example, when a fault to ground or to another conductor causes a quantity to be

abnormal, the current will be greater than under normal conditions and the voltage

will decay. If a voltage model is being used, the short circuit must be isolated so

that the voltage can regain its normal level. Additional sources should not be made

available because they would only serve to aggravate the problem by pumping more

current into the short circuit.

4 Utilization of KATE

The diagnostic and control engine is the heart of the IPC prototype. It evolved

from the Knowledge-based Autonomous Test Engineer (KATE), a shell developed for

building model-based diagnostic applications by researchers at NASA Kennedy Space

Center [19]. KATE consists of tools for building structure and behavior models to

which a diagnostic reasoning engine can be applied. The reasoner employs a constraint

suspension strategy. A predictor simulates the normal behavior of the target system

which is compared to the actual performance of the target system itself. The diagnoser

collects a set of suspects by placing in a list all components physically upstream

from the discrepancy. Each suspect is individually tested for consistency by failing it

purposely and suspending all of its constraints. The change is propagated throughout

the system by using the behavioral knowledge of each component as well as a function

which "inverts" the input-output function of each device to set values at the input

of the device based on its output value. KATE also uses inversion to determine the

action to undertake to isolate the failure and to establish an alternate source of power.

KATE uses objects to represent its knowledge base, where a set of slots will contain

the name(s) of the other components connected to its input and output.

The IPC inherited from KATE

1. The object-based model representation, including all the attributes for repre-

senting physical structure and behavior as well as the conceptual (ISA) hierar-

chy;

4 UTILIZATION OF KATE 17

2. Some of the constraint suspension-oriented reasoning procedures for applying

the model for control;

3. The basic algorithmic monitor-diagnose-control loop; and

4. Many of the low-level functions and procedures.

The IPC prototype differs from KATE, however, in crucial ways. First, the IPC is

a translation of (the PC version of) KATE into C++. Second, as noted, the IPC

replaces the constraint suspension approach to gathering and testing suspects with

an approach using a combination of structural information and assumptions about

the behavior of components. Second, the IPC implements the meta-object technique,

described above, for modeling global behavior. As noted earlier, these components

represent the global parameters in the system and are described by mathematical

equations that describe the relationships between these parameters. For example,

they represent the KCL equations needed to adequately describe the system. How-

ever, the concept of meta-objects only represents a limited means of representing

global behavior because they include significant amounts of hard-coded information

about the system that is difficult to implement as well as represent.

Figure 1 shows an example of the use of the representation of meta-objects in a

model. Although the frames in Figure 1 (which actually represents part of the model

of the PMAD) looks very LISP-like, it is parsed by the IPC into C++ objects. The

definition of component RPC-P1 uses meta-object META-LC1-PORT to determine

the equivalent resistance in a part of the circuit. Component RBI-P, located higher

in the electrical hierarchy of the system, uses meta-object META-RBI-P which in

turn uses META-LCI-PORT, in predicting the equivalent resistance in a larger part

of the circuit which encompasses RPC-PI. This avoids incurring the cost of using

a meta-object if META-RBI-P used RPC- Pl instead of META-LC1-PORT. In such

a case, the value of RPC-P1 must be calculated before META-RBI-P could use it.

As can be inferred from Figure 1, a problem with meta-objects is that they demand

significant computation, calculating the equivalent impedances every time the model

is run, whether any changes in the structure of the system have taken place or not.

This is especially costly when more than one meta-object is used in combination as in

4 UTILIZATION OF KATE 18

(deframe RBI-P

(nomenclature "remote bus isolator (port side)")

(aio rbi)

(unit '!amps")

(source-path (and (cstatus gc-command-rbi-p)

(a//d-cstatus power-p)))

(source power-p)

(status (* 120 (meta-component meta-rbi-p)))

(in-path-of current-rbi-p bus-p))

(deframe META-RBI-P

(nomenclature "Meta-component for port rbi")

(aio meta-component)

(source-path (cstatus gc-command-rbi-p))

(status

(+ (if (cstatus gc-command-pl) (meta-component meta-lcl-port) 0.0)

(+ (if (cstatus gc-command-p2) (meta-component meta-lc2-port) 0.0)

(if (cstatus gc-command-p3) (meta-component meta-lc3-port) 0.0))))

(source t))

(deframe RPC-P1

(nomenclature "remote power controller")

(aio rpc)

(units "amps")

(source-path (and (cstatus gc-command-pl) (a//d-cstatus bus-p)))

(source t)

(status (* 120.0 (meta-component meta-lcl-port)))

(in-path-pf bus-pl current rpc-pl))

(deframe META-LCI-PORT

(nomenclature "Meta-component for LCl port side")

(aio meta-component)

(source-path (cstatus gc-command-pl))

(status

(+ (if (cstatus gc-command-pl02) (/ i 20.0) 0.0)

(+ (if (cstatus gc-command-p103) (/ i 60.0) 0.0)

(+ (if (cstatus gc-command-pl04) (/ i 15.0).0.0)

(+ (if (cstatus gc-command-p105) (/ 1 30.0) 0.0)))))

(source t))

Figure 1: Meta-Object Definitions

5 UTILIZATION OF THE SSM/PMAD 19

the above example. Therefore, they should be used sparingly and only within smaller

domains. Another problem is that the impedances downstream from the meta-objects

are hard-coded into the meta:object definition. This can introduce problems when

loads are modified, either dynamically (i.e., a motor has a normal increase in torque

demand when a compressor kicks in), or physically when one load is replaced by

another of a different rating.

A final modification of KATE incorporated into the IPC was the ability to isolate

components from the remainder of the system. KATE has traditionally been applied

to process control systems, whose behavior does not require the ability of the controller

to isolate components; hence, the needed change for the IPC.

In summary, the changes from the original KATE reflect the specialization of the

IPC to use in electric power systems, as opposed to KATE's more general nature,

which allows it to be used in process control systems and in digital electronics.

5 Utilization of the SSM/PMAD

The IPC developers needed to test the system on a near-real time environment to

ensure the legitimacy of their research hypothesis. Consequently, they chose the

SSM/PMAD as their testbed. The PMAD is a direct current power distribution

system breadboard representative of a space station power system. It is interfaced

to computer hardware for the purpose of testing power system scheduling, diagnosis

and control software systems. The breadboard is supplied by two independent de

sources, the starboard supply and the port supply. Each of these are connected to

a distribution bus through remote bus isolators (RBI's). RBI's are switches used for

isolation of the power supplies and are not capable of current interruption. Each of

the two busses supply the power to three load centers, Load Centers 1, 2, and 3,

through 3 kW remote power controllers (3k RPC's). The RPC's are solid state dc

circuit breakers capable of interrupting fault currents. Figure 2 shows a schematic

representation of the PMAD distribution network. Each load center has a number

of loads being supplied by its bus. These loads consist of lights, fans, or simply

resistors, and are supplied from their respective load center through 1 kW RPC's.

5 UTILIZATION OF THE SSM/PMAD 20

PDCU

Load Center I

(_) RBI

3Kw RPC

1Kw RI_

Load Center 2 Load Center 3

]

Figure 2: The SSM/PMAD Breadboard Schematic

Each load center has two busses, one coming from the starboard supply and the

other from the port supply. A set of critical loads such as cabin air supply and

emergency lights are fed from both supplies through two redundant paths, so that

if one supply or bus is lost, they can be alternatively fed from the other. The IPC

prototype testing centered around the detection of systems faults, the isolation of the

faulted component in the system, and the establishment of the redundant path to

these critical loads. Since the redundant loads were contained in Load Center 3, the

bulk of the testing was carried out in Load Center 3. Sensing devices consist of current

sensors and voltage sensors. Each RPC contains a current sensor that measures the

current flowing through it. Additionally, external current sensors at various locations

such as the RB1 also measure current in the circuit. Bus voltages are measured, but

the signal received is a discrete value when the voltage reaches a specific percentage

of full voltage. Thus, they were not used, and the current model of the PMAD was

implemented in the IPC prototype.

The RBI's and the RPC's are controlled through a set of networked Lowest Level

Processors (LLPs), which form the interface between the controlling computer and

the switchgear. The LLP's serve to read the sensors as well as to carry out any action

6 IPC ARCHITECTURE 21

Power System

Communication InterfaceI

[] ISimulator]

I_ ?

Process SD Model

11
Run-time Display/Controller]

Development

Tools

Model

Library

m

N

O

d

e

1

E

d

1

t

O

r

;- Model developer

End User

Figure 3: Intelligent Power Controller Architecture

commands, such as opening or closing switches, directed to the RPC's and RBI's. The

IPC prototype interfaced directly with these LLP's. Since the LLP's were networked

to the Internet system, tests of the IPC could be done remotely from the primary

research sites of Orlando and Melbourne, FL.

6 IPC Architecture

This section summarizes the technical discussion by presenting a description of the

architecture of the IPC. The Intelligent Power Controller (IPC) consists of two main

subsystem, data bases and libraries. The overall architecture is displayed graphically

in Figure 3. The two large subsystems identifiable in the figure are: the real time

6 IPC ARCHITECTURE 22

power controller (IPC/RT) and the graphical modeling tool system (IPC/GMT).

The RT consists of the hardware interface, the simulation tool, the FDIR system,

and the real time controller and display. The IPC/GMT consists of a model library,

a model development tool, a simulation tool (which it shares with the run time sub-

system), and an icon editor. The end user builds and tests models of a target system

through interactions with the icon editor. Because the IPC/GMT subsystem was

not a requirement of this contract, and the contract award was not applied to the

development of this subsystem, this document will not contain a discussion of the

IPC/GMT. Rather, in the following subsections, we discuss in greater depth the run

time design of the IPC/RT, followed by sample run time sessions.

6.1 The IPC/RT System

The IPC/RT is driven primarily by user interaction. Its run time environment can be

divided into two modes of operation. The first mode provides the CAD facilities that

arc needed to construct a useful display of a model. The second mode of operation

provides a runtime environment that allows the user to easily interact with the IPC,

and to visually monitor the system.

When the IPC/RT is first executed, the user must specify what model files are to

be]oaded. Initially, the screen is grey, with only two menu options available under

the button File on the main menu bar. The user can either load a model, or exit

the IPC/RT. Once the user loads a model, the system follows the actions shown in

Figure 4. This figure shows how the parser begins the process of translating the model

information into the iconic display. Once the model has been parsed, the IPC/RT

displays the objects on the screen, along with any relevant connections.

The actions the user may perform in the two operating modes are implicitly mu-

tually exclusive. On the runtime side the user should not be able to modify the layout

of the screen. In this mode, the user is only interested in issuing commands to the

IPC and viewing the results. On the CAD side, the user should not be able to issue

any runtime commands, but should be able to modify the screen as well as the model.

There is no impact of screen changes during a runtime session.

6 [PC ARCHITECTURE 23

Parse Model 1

(Draw AIO Connections 1

(Create Drawn Objects 1

Show visible Icons and Connections

I Enable Runtime Functions I

Figure 4: Program Flow for Load Model

6.1.1 CAD Facilities Overview

Once a model is displayed on the screen, the IPC/RT enables many of the other facil-

ities for the user. Initially, the IPC/RT is in the CAD mode of operation. The Xview

Notifier, a process for retrieving data from file descriptors, handles all system activ-

ities, including user interactions, and communicating with other systems. Figure 5

shows the role of the Notifier.

The CAD environment implements the following facilities:

• The CAD mode allows the user to customize the arrangement of icons on the

display. The user selects an object to be repositioned with the left mouse button,

and while holding the button down, drags the icon to the desired position. The

connections associated with the icon will automatically be updated when the

user releases the left mouse button.

6 IPC ARCHITECTURE 24

IPC/GMT
Communications

Notifier

Mouse Events

Select Button I

[Mov_Object[

[Update Connections]

IPC

Communications

Menu Button I

I !Icons]

1

I_Edit Connections [

Hide Icon 1and Connections

Figure 5: IPC/RT CAD Facilities

6 IPC ARCHITECTURE 25

• The user is also able to edit the icons to be used by an object. Multiple icon

pixmaps can be specified, along with attributes specific to each of them. These

icon attributes are edited by the user through a dialog box.

• The CAD mode of operation also allows the user to edit the attributes of each

connection associated with an object. The attributes of each connection are

edited by the user through a dialog box.

• Lastly, while in the CAD mode, it is possible to have another support tool

contending for write permissions on the model data files. The Notifier warns

the user of any contentions with other systems. The IPC/RT is considered

a server in terms of communications, and any other support tools are clients.

These clients may at times need to modify the model files, and precautions are

taken to prevent losing edits made by the user in the IPC/RT CAD mode.

The editing functions in the CAD mode are accessable through a set of menu but-

tons, starting with the top-level mode button, which allows the user to enter the

editing mode, and progressing through the set of editing buttons corresponding to

the functions just listed.

6.1.2 Runtime Facilities Overview

The runtime facilities allow the user to easily control and monitor the IPC. Once

a runtime session is initiated through the main menu bar, the Notifier serves many

different roles. Figure 6 depicts the activities of the Notifier.

The runtime environment implements the following facilities:

• Four text windows are provided for monitoring the output of the IPC. They

comprise the following:

1. A warning window which receives messages that are intended to attract

the attention of the IPC developer. Warnings indicate events such as a

fault being detected in the system;

2. A recovery window which receives the names of the objects that are recov-

ered after the FDIR process is completed;

6 IPC ARCHITECTURE 26

IPC/GMT
Communications

Notifier

I I

Issue Command

to IPC

IPC

Communications

Menu Button [

[_Maintain Object

V
Unmaintain Object [

[Unfail Object]

Figure 6: IPC/RT Runtime Facilities Overview

6 IPC ARCHITECTURE 27

3. A general window which receives messages that are important to the IPC

developer, but cannot be classified as a warning; and

4. A main window which displays the raw output of the IPC.

• The user is able to use the mouse to interact with the IPC/RT. The left button

of the mouse issues control commands to the IPC. If the icon being clicked on

is a control function, called a GC-COMMAND, the Notifier will send a message

to the IPC to toggle the state of the object;

• The right mouse button, which is the menu button, also gives the user a different

menu than in CAD mode. This menu has the following three options:

1. Maintain. This menu option allows the user to tell the IPC to maintain an

object at a specified value. Once an object is on the IPC's maintain list, the

IPC will attempt to restore power through a functioning redundant path.

An object that is being maintained is highlighted with a green border.

2. Unmaintain. This menu option removes an object from the IPC's main-

tain list.

3. Unfail. This menu option allows the user to tell the IPC to remove an

object from its list of failed objects. The IPC is then able to determine

when previously failed hardware has been corrected. It can then use the

component as a possible path for restoring power to the critical loads.

• The IPC/RT updates the current sensor values whenever the "display measure-

ments" command is processed by the IPC. The value is written over the icon

that represents a current sensor. The user can also type "d m" into the com-

mand window, or press the UPDATE SENSOR VALUES button on the

main menu bar. If the IPC is in the FDIR process, there may be some delay

before receiving the new measurements.

• The IPC/RT also updates the current state of the switches. The IPC/RT also

writes the letter that represents the state onto the left hand side of the icon.

6 IPC ARCHITECTURE 28

The letters 'N','F','T', and 'U' denote the switch state as being on, off, tripped,

and unusable respectively.

• A command window is provided to allow the user to directly issue commands

to the IPC in a text format, and is primarily for the use of the IPC developers.

• The IPC/RT utilizes color highlighting to clearly show the objects that are

involved in the FDIR process. All suspects are given a yellow border, and any

failed objects have a red border.

• The Notifier accepts clients that need to communicate with the IPC/RT, such as

the IPC/GMT. Once a client is established, all communications with the client

and the resulting warnings to the user that may occur, are issued by another

parsing routine invoked by Notifier.

By providing these capabilities, the runtime environment is able to provide a fast and

robust method of interaction with the IPC.

6.1.3 Iconic Representation of PMAD Objects

The PMAD images that are supplied to the user were drawn using a public domain

color image drawing and editing tool call pixmap. The graphics format that was used

in this project is the XPM format. This common format allows the user to utilize

any drawing package desired, even an image scanner, as long as the final output is

converted into XPM. This conversion can be done with the Pbm Plus package that

is available on Internet.

An object instance that has no previous icon definitions is given a default image

which the user can interactively change. For example, an RPC is displayed in three

parts: the object itself, a measurement, and a command. The supplied interface has

three images that are positioned next to each other, to give the appear of a single

object, the RPC. Figure 7 shows the three icons that make up the RPC. Future

enhancements would allow the user to specify a single icon for multiple objects, a

group, or to simply group several icons together for easier repositionlng.

6 IPC ARCHITECTURE 29

:i:i:':i:.k::_i.-.:.-:._-_" .-:_'_:?._.'._?..:._,__ :_i

Figure 7: Example Iconic RPC

6.1.4 Frame Data Validation

In the process of parsing the files that define the model, the system is capable of

validating each frame definition. Validation takes the form of a recursive descent

parser. The validation currently performed is only for the syntactic aspects of the

model.

Another step toward the validation of the model lies in the testing for cycles within

the model. This task is relatively trivial due to the design of the IPC/RT, and the

traversal methods have already been defined within the classes.

6.2 Sample Runs

To allow the reader a sense of the IPC user's point of view, this section summarizes

the runtlme session which occurred during the demonstration of the IPC at NASA

Marshall Space Flight Center as part of the requirements of this contract. During the

demonstration, the IPC performed perfectly, and the IPC/RT was able to provide

a fast and easy runtime environment. A more detailed analysis of the tests will be

provided in the next section.

The demonstration consisted of a set of six tests which served to prove the capa-

bilities of the IPC. An additional scenario was accidentally introduced by an inexpe-

rienced user of the IPC/RT, and is also recorded in the playback. The IPC performed

as expected, even though the accidental case had not been attempted previously. The

fact that the user was able to introduce a new scenario shows how easily the IPC can

6 IPC ARCHITECTURE 30

be manipulated through the use of the IPC/RT.

The following sections present snapshots of three of the scenarios performed during

the demonstration. The color highlighting of the objects in the snapshots indicate

the following conditions.

• Green An object with a green border is a critical load that is to be maintained

by the IPC. If its current power source fails, the IPC needs to take action to

restore power through a redundant power source.

• Yellow An object with a yellow border indicates that it is a suspect for the

fault(s) detected in the system.

• Red An object with a red border indicates that it is a failed (unusable) com-

ponent and the cause for a fault in the system.

In each of the following scenarios, the critical loads PRPC-30620 (a fan) and

PRPC-30418 (a bank of lights), are being maintained by the IPC. Normally the IPC

is monitoring the system as shown in Figure 8.

6.2.1 Fault with Recovery

In this scenario, a hard fault is placed on Remote Power Controller (RPC) P306,

which is currently the power source for the critical load PRPC-30620. The IPC

begins the FDIR process and indicates the suspects for the fault. Figure 9 shows the

IPC/RT screen. On a color terminal, the suspects are highlighted in yellow.

Once the suspects have been determined, the IPC isolates the cause of the fault.

The IPC fails RPC-P306, and restores power to PRPC-30620 via RPC-S320. Fig-

ure 10 shows the failed component and the new source of power for the critical load.

6.2.2 Fault with Double Recovery

In this scenario, a hard fault is placed on Remote Power Controller (RPC) P3, which

is currently the power source for RPC-P304, RPC-P306, and RPC-P307. RPC-P306

6 IPC ARCHITECTURE 31

Figure 8: Monitoring the SSM/PMAD

is the power source for the critical load PRPC-30620, and RPC-P304 is the source

for the critical load PRPC-30418.

The IPC begins the FDIR process and indicates the suspects for the fault. Because

RPC-P3 supply power to RPC-P304, RPC-P306, and RPC-P307, they each trip on

under-voltage. This results in both critical loads losing power. Figure 11 shows the

IPC/RT screen (again, in color, the suspects are highlighted in yellow). Once the

suspects have been determined, the IPC isolates the cause of the fault. The IPC fails

RPC-P3, and restores power to PRPC-30620 via RPC-S320, and also restores power

to PRPC-30418 via RPC-S318. Figure 12 shows the failed component and the new

sources of power for the critical loads.

6 IPC ARCHITECTURE 32

Figure 9: Scenario 1: Fault to RPC P306

6.2.3 Multiple Fault without Recovery

In this scenario, hard faults are placed on two RPCs, P303 and P307. These RPC's

are not supplying power to any of the critical loads. The IPC begins the FDIR

process and indicates the suspects for the fault. Figure 13 shows the IPC/RT screen

at this point. Once the suspects have been determined, the IPC isolates the causes of

the faults, and the IPC fails RPC-P303 and RPC-P307. Figure 14 shows the failed

components.

The screen shots presented in this section show the SSM/PMAD model display,

and how it changes during a real runtime session. The playback data used to get

these snapshots was taken from the demonstration given at NASA MSFC. During

7 TESTING THE IPC 33

Figure 10: Scenario 1: Failure of RPC-P306 and Power Restored to PRPC-30620

this demonstration, the IPC/RT clearly demonstrated its ability to meet its primary

requirements of being fast and easy to use.

7 Testing the IPC

This section describes the testing undertaken to prove the effectiveness of the IPC in

performing FDIR, using the PMAD testbed.

7 TESTING THE IPC 34

Figure 11: Scenario 2: Fault to RPC P3

7.1 Test Scenarios

There was a significant number of tests performed on the IPC, using the PMAD.

Some of these included putting direct short circuits to ground at various locations in

the system, such as on the load side of the lk PRC, and on the load center side of the

3k Remote Power Controllers (RPC's). This type of fault was referred to as a hard

fault, and it required the IPC prototype to recognize the discrepancy in the current

sensor reading, find the "failed" component (usually an RPC), and if opening the RPC

would cause loss of power to a critical load that had a redundant path, to establish

an alternate path by closing the appropriate RPC. The RPC's in the PMAD have

internal sensors that cause them to trip on hard faults; on accumulated overcurrent

7 TESTING TIIE IPC 35

Figure 12: Scenario 2: Failure of RPC-P3 and Power Restored to Critical Loads

over time in cases of lower level faults (I2t), or on undervoltage. The IPC prototype,

therefore, would see the discrepancy not as a difference in current magnitudes, but

rather, as the unexplained opening of a RPC by its internal mechanism. It would

thus only have to establish redundant paths to critical loads.

Another type of test consisted of short circuits to ground through impedances

(called soft faults). The current levels generated by these faults are significantly

lower than that of hard faults, and are thus more insidious. They are, therefore,

difficult for conventional protective devices to detect and protect against because the

level of overcurrent may be below not only the instantaneous trip level of an RPC,

but also below the I2t pickup level where there would be no trip regardless of the

time elapsed. Yet, soft faults can be quite destructive. Since the RPC's would not

7 TESTING THE IPC 36

Figure 13: Scenario 3: Fault to RPCs P303 and P307

trip themselves automatically for soft faults, the IPC, in this case, is tasked with

detecting and diagnosing the problem, isolating the fault location (usually the closest

upstream RPC), and initiating recovery action, if such is warranted.

Sensor failures were also simulated by disconnecting the leads on current sensors

being used by the IPC. The action expected of the IPC in this situation was to declare

the sensor to be erroneous and label it as unusable, but allow the rest of the system to

continue normal operation. This represents a difficult task for local relaying schemes,

as well as for the state of the art in global monitoring systems which employ other

artificial intelligence techniques.

Lastly, multiple (two) independent short circuits (hard and soft faults as well as

combinations of both) were placed on the system simultaneously. The prototype was

7 TESTING THE IPC 37

Figure 14: Scenario 3: Failure of RPC-P303 and RPC-P307

expected to identify all of the fault conditions, isolate them and initiate recovery

action. This likewise represents a difficult case for local protection schemes as well as

for global monitoring systems that use artificial intelligence techniques.

The hard and soft fault tests were all executed in Load Center 3 due to its inclusion

of redundant loads. No such redundancy was present in the other Load Centers. Tests

on failed sensors, however, were done in Load Center 2 because that is where the

failable sensor was installed. This test consisted of the IPC monitoring the PMAD

while under normal operation for a sufficiently long period of time to establish normal

conditions in the system. Then, the leads to the failable sensor were removed, which

caused it to read zero.

There were two objectives to the test program: a qualitative and a quantitative.

7 TESTING THE IPC 38

The qualitative objective was to determine whether in light of the sensor readings

observed, the IPC reached the proper diagnosis and carried out the appropriate cor-

rective action.

The quantitative objective of the tests was to measure the time-to-action of the

test. The time-to-action, as noted earlier, is the time taken by the IPC to complete

the isolation of the failed component, starting from the time the fault was placed.

The results of this quantitative aspect of the test phase were important because, as

noted earlier, in order to represent a usable tool in the real, earth-bound world, the

IPC must have an adequate time-to-action. A suitable time-to-action of the IPC

when fast local tripping capability is available to protect against hard faults (such

as is the case with the PMAD) is in the order of a few seconds (10 to 15). In such

circumstances, the IPC would serve as secondary protection against hard faults and

primary protection against soft faults and sensor failures not normally detected by

the local protection, as well as for the recovery of the system when affected by either

hard or soft faults. If the IPC is to be used as a primary means of protection for

hard faults, however, an adequate time-to-action would have to be in the order of

0.5 to 1.0 second. This is based on the fact that low voltage distribution breakers

in earth-bound power distribution networks have fault clearing times of less than 10

cycles of 60 Hz current. This equates to 0.167 seconds. If additional time is allotted

for data acquisition from sensors, then an upper bound of one half to one second for

a time-to-action would be considered adequate.

The time-to-action, however, can be a misleading measure of the response time

of the IPC itself, since this parameter includes any and all communications network

delays in getting the sensor data from the LLP's to the IPC, as well as relaying the

controlling command from the IPC to the LLP's. There were a total of 13 sets of

tests designed for the evaluation phase of the investigation. Table 1 describes the

general objective of each test. All but one were successfully executed numerous time

(between 10 and 35 times).

Due to the overall symmetry of Load Center 3, and the general objectives of the

tests, the same test was executed on different, but hierarchically and functionally

identical, sets of components in the system. Table 2 describes the components most

7 TESTING THE IPC 39

Test Number

2

3

4

5

6

7

8

9

10

11

12

13

Test Description

Soft fault in 1K circuit with critical loads maintained

Hard fault in 1K circuit with redundant loads maintained

Soft fault in 3K circuit with redundant loads maintained

Hard fault in 3K circuit with redundant loads maintained

Soft fault in 1K circuit with no recovery

Hard fault in 1K circuit with no recovery

Soft fault in 3K circuit with no recovery

Hard fault in 3K circuit with no recovery

Sensor failure at 1K RPC

Sensor failure at 3K RPC

Multiple faults with no recovery

Multiple faults with two redundant loads maintained

Multiple faults with one redundant load maintained

Table 1: Test Objectives

Test Number Failed Object Isolated Object

1 RPC-P306, CURRENT-RPC-P306 RPC-P306
2 RPC-S320 RPC-S320

RPC-P3

RPC-P3

4 RPC-S3

5 RPC-P306

6 RPC-S316

7

RPC-S3

NOT TESTED

RPC-P3

RPC-S3

RPC-P306

RPC-S316

RPC-P3

RPC-S3

Recovered Object
$320

P306

$318, $320

P3O4, P306

NR

NR

NR

NR

10 CURRENT-RPC-S2 NR NR

11 RPC-P303, RPC-P307 RPC-P303, RPC-P307 NR

12 RPC-S318, RPC-S320 RPC-S318, RPC-S320 P304, P306

13 RPC-P303, RPC-P304 RPC-P303, RPC-P306 $318

Table 2: Example Runs for Fault Tests

7 TESTING THE IPC 40

frequently used to carry out each of the tests. The symbol 'NR' indicates 'not re-

quired'. This indicates those tests that did not require either component isolation, or

recovery of redundant loads. Tests 11, 12, and 13 were tested with a combination of

hard and soft faults.

7.2 Test Results

The IPC prototype successfully met its qualitative objectives under all test conditions

executed. Test 9, however, required additional hardware to implement and was not

executed. The tests showed that the IPC prototype was successful in diagnosing the

problem, isolating the fault, and where required, carrying out appropriate control

action. This control action consisted of supplying all redundant loads from alternate

sources. This was true for all 12 cases executed. Furthermore, the IPC testing

confirmed the ability of model-based reasoning to diagnose unexpected failures. As

noted earlier, during one testing session, a casual user improperly opened one of

tile RPC's feeding a redundant critical load (the other RPC, meanwhile was already

open). Since the load had been designated as critical, and thus for a certain level of

current to be maintained to it, the IPC took it upon itself to immediately close the

other RPC, thus re-establishing a power source to the critical load.

The quantitative objective of the test program was to measure the time-to-action

exhibited by the IPC for some of the tests. Table 3 depicts the worst, the best, and

the average times recorded for a series of tests. All times depicted are in seconds.

The number of Tests column of Table 3 represents the total number of times the test

was run successfully. However, timing measurements were not performed for all test

runs. In fact, time-to-action data for tests 5 and 6 result from only one test run, and

should be interpreted with this fact in mind.

It was found that the times-to-action ranged from slightly over 7 seconds to as

much as nearly 34 seconds, with the average being about 10 to 12 seconds. These

times-to-action are considered sufficiently fast for real time deployment to isolate

hard faults in the presence of fast local tripping devices such as found in the PMAD

with the RPC's. Such an arrangement prevents the flow of the high fault currents

that typically result from hard faults. Soft faults, on the other hand, are generally

7 TESTING THE IPC 41

Test Number o] Tests

1

2

3

4

5

6

7

8

9

I0

II

12

13

Worst Time

Isolate Recovery

30 11.82 2.01

35 11.89 2.02

15 9.47 3.85

20 Time-to-action not measured

30 9.4 NR

30 33.92 NR

15 Time-to-actlon not measured

20 Time-to-action not measured

0 Test not performed

15 8.9

20 14.73 NR

15 Time-to-action not measured

10 Time-to-action not measured

Best Time Average Time

Isolate Recovery Isolate Recovery

10.65 1.45 11.21 1.73

10.39 1.52 10.97 1.78

7.86 1.94 8.93 3.22

9.4 NR 9.4 NR

33.92 NR 33.92 NR

NR 7.4 NR 8.1 NR

10.57 NR 12.80 NR

Table 3: Results of IPC Tests on PMAD Breadboard

not considered to be time critical due to their low current level, thus making those

times-to-action acceptable. The same applies for sensor failures. Since soft faults

and sensor failures are not typically detected by such local protection schemes, the

presence of the IPC provides a significant advantage.

Nevertheless, these times-to-action are not sufficiently fast in the absence of fast

local interrupting devices. Times-to-action of one second or less will be required in

order to make IPC applicable to such duties.

Some of the excessive delay can be attributed to the use of the Internet to exe-

cute the tests remotely from Orlando to Melbourne. In order to quantify this delay,

additional tests were done locally as well as remotely. Test 2 was selected for this

experiment since it is considered to be one of the most common faults in actual power

systems. The objective was to compare run times without any optimization to obtain

a gross representation of the internet delay times. The results are depicted in Table

4. A comparison of the times showed approximately -1/2 to 18 seconds difference

in time-to-action. The worst REMOTE time was obtained in the afternoon (EST)

which is a heavy traffic period for Internet given the start of business hours on the

West Coast.

This result shows that the effect of an Internet delay cannot be determined by

general comparisons of run times. Also, it may show that Internet delays are also

7 TESTING THE IPC 42

Test Remote

Best Worst

2 34.97 53.14

Local

With Delay Without Delay

35.54 22.16

Table 4: Speed Comparison of Local vs. Remote Testing

occurring significantly at Huntsville. It should also be noted that the test at NASA-

MSFC was run on a Solbourne while the remote testing was done on a Sun Spare 1+

which is somewhat faster. This may explain the slower time for LOCAL. All times

were compared using the computer clock time elapsed from a discrepancy detection

to a fault isolation and then to a recovery in hundredth's of a second.

A second, and more significant, objective of this comparison was to compare the

running time to a version of the code that was exempt from internal Internet delay

waits that were embedded in the interface code in order to run the IPC remotely. The

other value displayed in Table 4 (Local W/O Delay) gives the runtime obtained when

these delays were removed. This resulted in a significant reduction from 36 seconds

to 22 seconds.

7.3 Summary and Evaluation of Tests

The test results support the following claims:

1. Structure-and-behavior models can be developed for use by a model-based rea-

soner for electrical power system FDIR;

2. These models are robust enough to accurately simulate the behavior of simple

power systems;

3. A model-based diagnoser with the appropriate model, such as the IPC proto-

type, is capable of correctly monitoring a power system, diagnosing and isolating

any electrical faults, and undertake action to cause power flow to be restored

to critical, redundantly-wired loads in a short period of time;

8 SUMMARY AND REFLECTIONS 43

4. The IPC prototype can potentially react fast enough to be useful in a real-time

application; and

5. The TTA results confirm that the IPC could reside as a ground-based assistant

to mission control engineers performing FDIR on spacecraft, but would probably

be better suited as an on-board assistant to flight personnel.

The time-to-action results are in need of further improvement. Since no special effort

was made to optimize the IPC prototype code beyond the initial translation, we are

optimistic that the goal of a time-to-action of less than one second can be achieved

through further algorithmic and data structure efficiency improvements. From the

test results, it is clear that work in this area should focus on the diagnosis and

isolation portion of the system, since the times required to perform this function were

significantly larger than for the recovery. Lastly, the use of faster platforms, such as

a Sparc-10, will most certainly help in this matter.

Overall, the developers consider the data summarized in this section significant.

However, the tests also served to shed light on several improvements that need to be

made to the prototype in order to commercialize the technology. These are considered

in the final section.

8 Summary and Reflections

The success of any project can be measured in terms of both results obtained and

knowledge gained. The concrete results obtained, summarized in the previous section,

confirmed, in the minds of the developers of the IPC, that a first principles-based

approach to autonomous FDIR for spacecraft power systems is feasible. With the

right enhancements, a system like the the IPC can be used to effectively maintain

and control power distribution for power systems of the size envisioned for future,

long mission spacecraft. As the result of this effort, the developers recommend that

these enhancements consist of one or more of the following:

1. More effective storage management for the knowledge-base, in order to speed

up its access by the reasoner during diagnosis;

8 SUMMARY AND REFLECTIONS 44

2. A more robust knowledge representation, perhaps consisting of one of the fol-

lowing extensions:

• Developing models of finer granularity, including, for example, a more

detailed model of different loads;

• Incorporation of component fault models;

• Acquisition of expert knowledge to supplement the first principles-based

model, thus resulting in a hybrid system;

• Multiple models based on either structural or behavioral abstraction;

3. Caching of knowledge obtained during the reasoning process, e.g. through ap-

plying techniques like truth maintenance (TMS).

Some of these enhancements are minor; others more substantial. But none imply an

abandonment, or even a major change to, the first-principle-based approach. Future

extensions to the work of the IPC developers will consist of implementing some of

these enhancements.

As noted at the outset, the dual requirements of speed and robustness for the

IPC diagnoser was the major challenge to the success of this project, since these

requirements tend to be mutually inhibiting. To achieve an adequate degree of success

in meeting both requirements, we were led to an approach which relied less on generic

knowledge of power system structure and behavior, and more on knowledge about the

PMAD itself. On the modeling side, we attained an adequate degree of robustness at

the expense of generality: our approach might not easily generalize to power systems

which are larger in size and complexity than the PMAD. This concern will be tested

by future research, when other power system models will be built and tested on the

IPC. On the reasoning side, we were able to attain a greater amount of TTA speed by

replacing a general reasoning strategy, constraint suspension, with one that, again,

relied more on the properties specific to PMAD.

It seems to us, then, that there are two approaches one can take to developing

systems, such as the IPC, which construct and apply models for diagnosis of complex

8 SUMMARY AND REFLECTIONS 45

systems. One approach is to impart to the diagnostic system a more expressive knowl-

edge representation and reasoning device than was originally proposed by researchers

in model-based reasoning, who focused their attention on less complex devices. The

other approach, which was taken here, is to augment the original structure and behav-

ior representation (as implemented in KATE) by different kinds of knowledge about

components. This knowledge may be classified as heuristic by some, although we

prefer not to use this term, since it is commonly associated with purely experiential

knowledge of the expert, whereas the knowledge we incorporated may be a bit more

generic. We chose not to incorporate fault models into the system, although, if this

second alternative is to be developed further, this might also be considered.

Our current intent is to develop the first alternative further, to expand upon

the original model-based knowledge representation for dealing with more complex

devices. We currently feel that solving the problem of developing structure and be-

havior models for complex systems such as power systems will involve applying the

idea of behavioral abstraction. Recall that the behavioral complexity of a system is

measured mathematically in terms of its algebraic transfer function, and physically in

terms of the complexity of causal dependency relationships among the components.

We hypothesize that this complexity can be managed by abstracting on the basis of

different aspects of the system. By aspects (of electrical power) we mean things like

voltage, current, state (open, closed or tripped), impedance, temperature, etc. They

are things that are outputs of or inputs to the device. The circuit equations provide

examples of what we term aspect models. Each aspect model provides a complete

description of one aspect of the system's behavior. The dependency relationships

among components within an aspect model are invariably simpler than among com-

ponents within the complete model (i.e., the model within which all the aspects are

represented). The complete model can be recovered by running each model in paral-

lel, noting that the aspect models mutually constrain one another behaviorally. Thus,

aspect models provide a modular representation of behavioral complexity. Developing

this extension to the first-principles representation of knowledge is a current focus of

our research.

9 APPENDIX: USING THE IPC 46

, _.'._.::::.:::::::-:::-x:::::::::::"::":::_::.'f._i_i::-:"Jg'-'_:?.::N_::'_-:-:_'4_:i:_i:i:_::-:_:'_Z':-'.':._:__:"-':-."_'4_:::!:?,:o"_::::_::_:_:::_i:_::!:':::-:_--%"_-:::::'::__2__:-':_:_:"Y_'-_:::-'_'-__'4_::i:_-:i:i:':-:-_.o_:?i_::_:: _:::::::':::-::i:.'-':.:-:-:8"::?-_::.'-'.::::.'-?-"-:::!:!:-":::_:-:::::::::::::::::::::::::::::_:':::::_:::::_:'.:::::::::!:i::::.-':!:_:i:!::"_:::::::::::::::::::::::::::::::

9

Figure 15: Main Menu Bar

Appendix: Using the IPC

This appendix provides a comprehensive guide to all functions available to the user,

as well as a brief guide for future IPC programmers.

9.1 Starting the IPC and Using the Menus

To start the IPC, just type the name of the executable file, viz. ipcrt.

The IPC has several menu options that provide easy control of the runtime en-

vironment, and for model modifications. The following disucssion summarizes the

functions of each menu option.

The main menu, as shown in Figure 15, consists of the following options:

• The File button, located on the left-most upper corner of the window provides

the following selections:

- Exit - if a runtime session is active, it will terminate the session,

- Save Model - a copy of the original frame files being used will be saved,

and the current model will be saved into the same files from which they

were loaded.

- Load Model - this selection performs the following:

1. if changes to the current model have been made but have not been

saved, the user will be prompted to optionally save the current model,

and

2. the user will be prompted for the file(s) that are to be loaded. Normal

Unix pattern matching is accepted.

• The mode button provides two options that changes the operation of the IPC.

By default, the system is in Edit mode. When a runtime session is started, it

9 APPENDIX: USING THE IPC 47

automatically switches to runtime mode, thus locking out all editing functions.

The user has the option of switching between modes during a runtime session.

- Edit Model - the default mode that provides CAD-like operations.

- Runtime Mode - returns to the runtime mode of operation.

• There are several runtime control functions available under this menu:

- Start IPC - this selection spawns the IPC process, and switches from the

Edit mode to the Runtime mode.

- Restart IPC - this selection will terminate the current IPC process, and

respawn it.

- Terminate IPC - this selection terminates the runtime session.

- Show Command Window

- Show Main Window

- Show Recovery Window

- Show Warning Window

These selections bring their respective windows to the foreground. Often

these windows can be obscured by other windows that are active, and this

provides an easy way of accessing them.

• Update Sensor Values is a runtime function that sends the display measure-

ments command to the IPC. This provides an easy way of updating the screen

without direct user interaction with the IPC through the Command Window.

Each object on the display has two menus associated with it, depending on the

mode of the system. Figure 16 shows the menu available while in the Edit Mode.

• The Edit Icon(s) selection will display a dialog box which provides the user

the ability to modify the icons and their attributes.

The Edit Connection(s) selection will display a dialog box which provides

the user the ability to modify the connections and attributes of the object. See

Section Edit Connections Dialog Box for details.

9 APPENDIX: USING THE IPC 48

• Hide Object and Connection(s) This selection will cause the object to not

be displayed, as well as any connections associated with it.

When the user is in the Runtime Mode, there is a different menu available, as

shown below in Figure 17.

The Maintain selection will issue a command to the IPC to maintain this

object. The user will also be prompted for a value to maintain the object at.

An object that is to be maintained will have a green border around it.

The Unmaintain selection will issue a command to the IPC to remove the

object from its maintain list. The border of the object will also return to the

color of the background.

The Unfail selection will issue a command to the IPC to remove the object

from its failed list. The border of the object will also return to the color of the

background.

The Edit Icons Dialog Box (Figure 18) depicts the dialog box the user is given.

This provides an interactive method way of modifying the icons and their attributes.

With this dialog box, one is able to add, delete, and modify icons and their attributes.

The list box at the top of the figure shows the currently defined icons for this object.

They are labelled Closed Switch and Open Switch. If a line is selected within

this list, the values in the attribute fields will change to correspond to each icon. The

currently selected icon definition is the Closed Switch. Beneath this list box is a

pulldown list box called Available Icons which provides a list of icons as defined in

the database file. There is also a button labelled ADD TO LIST which will put the

currently selected icon in the Available Icons list into the upper definitions box.

Some default values are supplied for a new entry. Beneath the list box are other fields

that are related to this object definition:

• Default Icon. If checked, this button indicates that this icon is the default

icon displayed when the model is first loaded. If there is no default defined, the

Unknown icon is used.

9 APPENDIX: USING THE IPC 49

Upper Bound,Lower Bound. These two fields define the upper and lower

bounds for a Value Driven icon. Value Driven icons allow the user to define

multiple icons, which will change during a runtime session. This can simulate

a "tank" as well, if enough entries are defined.

• The field Control Function Value is for state driven objects, and contains

the value to be sent to the IPC process, in order to proceed to the next state.

• Caption. This field contains the text that is to be displayed near the icon,

according to the orientation specified.

• Foreground Color,Background Color. These two menus provide the user

with colors that can be used in displaying the caption of the selected icon.

Label Orientation. The four selections available are left, right, above, and

below, which indicate where the caption should be placed relative to the icon

itself. The default placement is below the icon.

Preview Icon Layout. This button will allow the user to see what their

definition will look like, in a separate window, without making the changes

permanent.

Also, at the bottom of the list box are two other buttons:

• Accept Changes. Selecting this button will save the changes made, and will

close the dialog box.

• Cancel Selecting this button will discard any changes made, and will close the

dialog box.

Figure 19 depicts the Edit Connections dialog box. This menu provides an in-

teractive method of modifying the objects' connections and their attributes. The

topmost list box contains the connections define for the currently selected object.

Each connection has the following attributes:

• Connection Visible. This boolean field indicates if the user wants the selected

connection to be seen on the display.

9 APPENDIX: USING THE IPC 50

• Connection Width. The user may change the width of the drawn line of a

connection with this field. A slide bar is also provided for input. A connection

can be 1 to 10 pixels in width.

• Color of Line. The user may change the color of the drawn line of a connection

with this list box. The current colormap is read into this list, thus some entries

have numerical entries instead of text.

Also, at the bottom of the list box are two other buttons:

• Accept Changes. Selecting this button will save the changes made, and will

close the dialog box.

,, Cancel. Selecting this button will discard any changes made, and will close

the dialog box.

9.2 Building IPC/RT

This section provides future IPC/RT programmers with information about building

the IPC/RT, and possible problem areas discovered.

In order to build this system, you need access to the SpiderWeb utilities, and

have the public domain XPM libraries available. You also need a C++ compiler,

preferably GNU, but others may work as well. Currently the IPC/RT is only guar-

anteed to work with the GNU C++ compiler version 2.4.5.

There is a make file provided with the source code. Once located inside the source

code directory, type: make. The system compiles cleanly on a Spare 2, and a Spare

10 with g++.

It should be noted that although it is possible to automatically send the display

measurements command to the IPC, it is presently not advisable. The IPC reads

the current measurements from the hardware whenever it receives the display mea-

surements command. The problem lies in the amount of time it take for the IPC

to retrieve the measurements from the hardware, and the time it takes to send this

information to the IPCRT. During this time interval, the IPC is not able to monitor

the system.

9 APPENDIX: USING THE IPC 51

One suggestion has been made to not ask for the current measurements of the

testbed, but to actually send only the last poll taken by the IPC. This would solve

this problem, but communication delays are still introduced by the request.

Optimally, the 1-PC should automate this by sending only the changes that have

occurred since the last request, instead of the whole system. Once this is done, the

RUNTIME:Update Sensor Values button can be removed from the menu bar.

REFERENCES 52

References

[1] Anderson, P. "Space Station Common Module Network Topology and Hardware

Environment", Martin Marietta Astronomics Group, Final Report, 1990.

[2] Chu, B. "Representing binary relations at multiple levels of abstraction" in

Methodologies for Intelligent Systems, 4(. Z. Ras (ed), North-Holland, 1989.

[3] Dague, P., Deves, P., Luciani, P., and Tallibert, P., "Analog System Diagnosis",

reprinted in (Hamscher, 1991).

[4] Davis, R. "Diagnostic Reasoning Based on Structure and Behavior" Artificial

Intelligence, Vol. 24, No.3, 1984, pp. 347-410.

[5] Davis, R., and Hamscher, W., "Model-based Reasoning: Troubleshooting",

reprinted in [17], pp. 3-24.

[6] deKleer, J. and Williams, B.C., "Diagnosing Multiple Faults" Artificial Intelli-

gence, Vol. 32, No.l, 1987, pp. 97-130.

[7] deKleer, J., "Focusing on Probable Diagnosis", in Hamscher, W., Console, L. and

deKleer, J., Readings in Model-based Diagnosis, Morgan Kaufmann Publishers,

1992, pp. 131-137.

[8] de Kleer, J,, Mackworth, A. K., Reiter, R., "Characterizing Diagnoses and

Faults", Artificial Intelligence, 56, 1992, pp. 197-221.

[9] Director, S.W., Circuit Theory: A Computational Approach. John Wiley and

Sons, 1975.

[10] Dugal-Whitehead, N. R., "The Continuing Development of Poweer System Au-

tomation Knowledge", Proceedings of the Intersociety Energy Conversion Engi-

neering Conference, 1993.

[11] Dugal-Whitehead, N. R., "Results of an Electical Power System Fault Study",

CDDF Final Report No. N06, NASA Tech Paper 3413.

REFERENCES 53

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Fesq, L., Stephan, A., and McNamee, L., "Modeling Power Systems for Diagno-

sis: How Good is Good Enough?", Proceedings of the 27th Intersociety Energy

Conversion Engineering Conference, San Diego, CA, 1992, Vol. 1, pp. 203-208.

Genesereth, M., "The Use of Design Descriptions in Automated Diagnosis", Ar-

tificial Intellignce, 24, 1, 1984.

Gholdston, E. W., Janik, D. F., and Lane, G., "A Diagnostic Expert System for

Space-based Electrical Power Networks", Proceedings of the Intersociety Energy

Conversion Engineering Conference, 1988.

Giunchiglia, F. and Walsh, T., "A Theory of Abstraction", Artificial Intelligence,

57,2-3, 1992, pp. 323-390.

Gonzalez, A. J., Osborne, R. L., Kemper, C., and Lowenfeld, S., "On-line diag-

nosis of turbine-generators using artificial intelligence", IEEE Transactions on

Energy Conversion, Volume EC-1, Number 2, June 1986, pp. 68-74.

Hamscher, W., Console, L., de Kleer, J., eds. Readings in Model-Based Diagnosis.

Morgan Kaufmann, 1991.

Hester, T., "FIES-II: A Real Time Fault Isolation Expert System", Proceedings

of the Intersociety Energy Conversion Engineering Conference, 1986.

Knowledge-based Autonomous Test Engineer: Software Description and Project

Overview, NASA Document, 1991.

Kelly, J., "Diagnosis by constraint propagation in math models" in Workshop

Notes from AAAI-90 on Constraint-directed Reasoning, 1990.

Konolige, K., "Abduction vs. Closure in Causal Theories", Artificial Intelligence,

1992, Vol. 53, No. 3.

Kuipers, B. "Qualitative simulation" Artificial Intelligence, Vol. 29, No.3, Sept.

1986.

REFERENCES 54

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

[32]

Lackinger, F., aand Nejdl, W., "Diamon: A Model-based Troubleshooter based

on Qualitative Reasoning", IEEE Expert, February 1993.

Leitch, R. R., Chantler, M. J., Shen, Q., and Coghill, G. M., "A Preliminary

Specification Methodology for Model-based Diagnosis", in Working Notes of DX-

93, The Fourth International Workshop on Principles of Diagnosis, Aberystwyth,

Wales, 1993, pp. 11-31.

Leitch, R., Shen, Q., "Finding Faults With Model Based Diagnosis", Proceedings

of the Second International Workshop on the Principles of Diagnosis, 1991.

Lollar, L., Weeks, D.J., "The autonomously managed power systems laboratory",

Proceedings of the 23th IECEC, Denver, Colorado, Vol.3, 1988.

Lloyd, B., Park, W., White, J., and Divakaruni, M., "A Generator Expert Mon-

itoring System,, Proceedings of the Conference on Expert System Applications

for the Electric Power Industry, Orlando, FL, June 1989.

Morris, R., Gonzalez, A., et. al., "A model-based fault diagnostic and control

system for spacecraft power" in Proceedings of the 27th IECEC, San Diego, CA,

1992, VOl.1, pp. 165-170.

Mozetic, I., "Hierarchical Model-based Diagnosis". Reprinted in (Hamscher,

1991).

Ng, H.T."Model-based, Multiple-fault Diagnosis of Dynamic, Continuous Phys-

ical Devices". IEEE Expert, December 1991, pp. 38-43.

Priest, C. and Wellman, B. "Modeling Bridge Faults for Diagnosis in Electronic

Circuits", in Hamscher, W., (ed.) Working Notes of the First International Work-

shop on the Principles of Diagnosis, 1990, pp. 69-74.

Reiter, R., "A Theory of Diagnosis From First Principles", Artificial Intelligence,

Vol. 32, No.l, 1991, pp. 57-96.

REFERENCES 55

[33]

[34]

[35]

[3G]

[37]

[38]

Russell, B. D., and Watson, K., "Power Substation Automation Using

Knowledge-Based Systems", IEEE Transactions on Power Delivery, October

1987, pp. 1090-1098.

Scarl, E. "Multi-Level Diagnosis in Model-based Reasoning", Boeing Computing

Services, Technical Report BCS-G2010-119, 1993.

Spier, R. J., and Liffring, M. E., "Real-Time Expert Systems for Advanced

Power Control", Proceedings of the [nterscociety Energy Conversion Engineering

Conference, 1988.

Struss, P., and Dressier, O., "Physical Negation: Introducing Fault Models into

the General Diagnostic Engine", Proceedings IJCAI-89, Detroit, MI 1989, pp.

1318-1323.

Struss, P. "What's in SD? Towards a theory of modeling for diagnosis", in [17],

pp. 419-450.

Watson, K., Russell, B. D., and Hackler, I., "Expert System Structures for Fault

Detection in Spaceborne Power Systems", Proceedings of the [ntersociety Energy

Conversion Engineering Conference, 1988.

REFERENCES
56

i::::>:::::::::_s_4f.:.::::_.:_-_.:.:*_:;_._:;_:_:._.:_:_:._:_.`:._i_#_.;:._.;.:_.f_,:_:_N_i_._i_}i_;_i_ii!_#i.i._.:I
:::-:_.::i-:.:':::s';i".":i-:.::i:.::i:::i'./-:::::::-:!:_:;''':" "tt:-":':i:'::""'::: ":':?_t[:":'_:::::_:'¢-'::':'::-:" "::" :...:::::.::_ . (... -...:::+:...,::_E_!:

!

Figure 16: Edit Object Menu

i:_:-:.:-,.-:.::::i:i__:i-:i:i-:i--:_.i,.'_::.;:i_-.:-_._._$:?.,:..-:__-i_:!_-:-i:-:,:i.:i----_:-i_.':
-::'i.-i"i_!_":::i::ii_s::Y_iN.'.::;.'.:.".:_"_ 'i:"!;._i ' -_i_i_%i
:::::-:_:::-,_-_xo:_._:-',-'/.4.*:'-*__ _i--'--::::::::-::-:--::::::::_:,.:_::-_,:..i:j_-_:.:_:y_]:_ fro, ,,x. _ _ _,_:.-.*...,:-._._,-_..-.:.-_...-.::.:._|

i]_::_:'.-_.i::;.!:':-:-:--:.:_:_::-:"-_g.-;_:_: ':: ._.;:.}..:_:i].:::..-ii]..:i::]-i]i]i_:i.:-:._::,?::::,.":"

............. _:.: __:s;'_.-_

:_;:':':':':': :': ":'"_ "'_:" : _":'-- ;-::".'::.:-:_i';-x-:-:-:-:-:-x.:-x-:-:-:-:-:f:::2"_::...................._,::.,.i_.i-::---::.-:::.'::::::::-::.-._...'__ _.._:.....i...:.._.:...:.`.:.:.,..::.:._s_.:_.!_:!._._.!_:..:....::::::..::_._.:..::_:!:.:::.._...ii:_`:.:_i}#_
:-:::_::::::_:_._.:.'::_]..?_?-_-7_:i..'.__.':!::':-_::'::'__;_:_ _i
::

Figure 17: Runtime Object Menu

REFERENCES 57

Figure 18: Edit Icons Dialog Box

REFERENCES 58

Figure 19: Edit Connections Dialog Box

_.-_dO" 19 '93 13:05 FROM MSFC BLDG 4201 RM222 PAGE.082

..." - --

• : |i

REPORT DOCUMENTATION PAGE o_,# _. o_o,.o,u
,, _, i i

T.-AGENCt" USE ONLY (Leave 'l_mkj' 2, REPORTDATE ,il, I_r_PO_'_1'_1_ AND. O_TE$ COVERED
November, 1993 _Ina±_eporc

...... L.--•

MODEL-BASED REASONING FOR POWER SYSTEM MANAGEMENT,

USING KATE AND THE SSM-PMAD

il

L attrNoK(s)
R. Morris, A. Gonzalez, D. Carriera,

F. D. McKenzie, B. Gann

7.PEKII_ORMIN_OR_t, NIZ_I";_ NJtM[{S) AND ADORES._(ES)

Florida Instit.ute of Technology

150 W. University Blvd.

Melbourne, FL 32901-6988
. L* . .

National Aeronautics and Space Administration

Washington, DC 20546

S. FUNDING NUMBER,S

Contract NAS_39385

it. PER,cORM|NG ORGA'N_TATION
REPORTNUMBER

10. _ON_mNG I MONITORING
AG_C'Y REPORT NUMD[II

..... i| •

11. SUPPLEMENTARY NOTES
Prepared in cooperation with-the Universit _ of Central Florida

Orlando, FL 32816

_).I[X_RU_I_ON/AVAI_ilGTYSTATEMENT

Unclassified

Unlimited

. lZb. OmSTm_,u'noNCODE

1_Aesmrr_M_2mw_ The overall goal of this research effort has been the

development of a software system which automates tasks related to monitoring

and controlling electrical power distribution in spacecraft electrical power

systems. The resulting software system is called the Intelligent Power Con-

troller ('IPC). The s pecif,ic _task.$ p,erformed by the IP•C include continuous

monitoring of the flow of power from a source tO a set of loads, fa's't detect _

ion of anomalous behavior indXcatin_ a fault to one of. the comp'onents of the

distribution s.ystems, generation of diagnosis (explanation) of anomalous

.behavior, isolation of faulty object from remainder of system and maintenance

of flow of power to critical loads and systems (e.g. life-support) despite

fault conditions being present (recovery). The IPC system has evolved out of

KATE (Knowledge-based Autonomous Test Engineer), developed = at NASA-KSC. _ATE

consists of a set of software tools for developing and applying structure and

behavior models to monitoring, diagnostic and control applications.

_ i,
14. SUBJECTTERMS

electrical power systems, model-based reasoning, fault-

detection, isolation, recovery (FDIR)

I?. SECUl_rY O.ASS|FtCAI_ 1L SECURITYCLASSIFtCAnON 19. SiCU_TY CLASSIFICATION
OF REPORT 0F THIS PAGE OF AI_TRAC'r

unclassified unclassified unclassified

NSN _S40_I-280-$SO0

1_ I¢,IMIiK OF PAf_I;

16. PF,K_ COD(

z0.umma'nON0_ASSTnACr;

unlimited

• . ' ' s_,,_;_ ,:g-;,,':,_ (Re,,._._)
... _'_-_¢_I _, _ _ _')q.ql

